Assignment 13

We follow the notations in Chapter 4 of our notes. This assignment is concerned with tangent and normal vectors of curves and surfaces.

- 1. Let $\gamma : (a, b) \to \mathbb{R}^2$ be a parametric curve and $t \in (a, b)$. The tangent space of Γ at $p = \gamma(t)$ is defined to be the one dimensional space spanned by the vector $\gamma'(t)$.
 - (a) Show that the definition of the tangent space is independent of reparametrization (so it is a geometric property).
 - (b) A normal vector is a vector (a, b) that is perpendicular to the tangent vector. Let $\gamma(s)$ be parametrised by arc-length, that is, $|\gamma'(s)| = 1$. Show that $n(s) = (-\gamma'_2(s), \gamma'_1(s))$ is a unit normal vector.
- 2. Optional.
 - (a) Let $\gamma : [0, L] \to \mathbb{R}^2$ be a closed parametric curve. Show that there exists an open set G containing Γ such that for each $(x, y) \in G$, there exist some s and a such that $(x, y) = \gamma(s) + an(s)$.
 - (b) Suppose further that γ is simple, that is, $\gamma(s_1) \neq \gamma(s_2)$ all $s_1 < s_2 \in [0, L)$ and C^2 . Show there exists a small $a_0 > 0$ such that G can be taken to be $G = \{(x, y) : \text{dist}((x, y), \Gamma) < a_0\}$ and for each $(x, y) \in G$, the s and a in (a) is unique.
- 3. (a) Let $\sigma : R \to \mathbb{R}^3$ be a parametric surface and $p = \sigma(s,t) \in \Sigma$. The tangent space of Σ at p is the two dimensional vector subspace spanned by $\partial \sigma / \partial s$, $\partial \sigma / \partial t$. Show that the tangent space at p is independent of reparametrisation. Propose a definition of reparametrization of surfaces.
 - (b) Let $\gamma : I \to \Sigma$ be a parametric curve on Σ passing $p = \gamma(t)$. Show that $\gamma'(t)$ belongs to the tangent space of Σ at p.
 - (c) In fact, show that every tangent vector at Σ arises in the way as is described in (b).
 - (d) Let Σ be the locus of a C^1 -function f(x, y, z) = 0 with nonvanishing gradient. Show that the gradient vector $\nabla f(x, y, z)$ is perpendicular to all tangent vectors at (x, y, z). In other words, it points to the normal direction.
- 4. Here is a typical case of Lagrange multipliers. Consider the constrained minimization problem

$$\inf\{f(x, y, z) : (x, y, z) \text{ satisfies } g(x, y, z) = 0\},\$$

where f and g and C^1 -functions. Let p_0 be a local minimum of this problem and suppose that $\nabla g(p_0) \neq (0, 0, 0)$. Show that there exists some scalar λ such that $\nabla f(p_0) = \lambda \nabla g(p_0)$. Suggestion: Show that $\nabla f(p_0)$ lies in the normal direction of the surface of g = 0.

5. Consider the Cauchy problem

$$\frac{dx}{dt} = f(x), \quad x(t_0) = x_0 \in \mathbb{R}^3$$

(We have rewritten (2.3) in Notes by replacing x, y by t, x respectively and assume f is independent of t.) Suppose that $f(x) \cdot x = 0$ and x_0 lies on the unit sphere. Show that x(t) remains on the sphere and the maximal solution of this Cauchy problem exists for all $t \in (-\infty, \infty)$.